“AD-A124 313 STORAGE REQUIREMENTS FOR FAIR SCHEDULING(U)
NEW HAYEN CT DEPT OF COMPUTER SCIEN
M J FISCHER ET AL. OCT 82 RR-251 N00814 82-K- 8154

UNCLASSIFIED G 12/1

........ o

KL

e

Lo £ &
b
M= “m 1.8
=

lizs s ws

—
——

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS - 1963 - A

T

ADAL12313183

D& FILE COPY

T‘hi r"f -~ . . R .
forp.i o Rniwved
dxshib;_; - . v aed I

YALE UNIVERSITY
DEPARTMENT OF COMPUTER SCIENCE

88 11 09 094

STORAGE REQ"REMENTS FOR FAIR SCHEDULING
by
Michael J. Fischer and Michael S. Paterson
Research Report # 251
October, 1982

SECUNITY CLASSIFICATION OF THis PAGE (When Dare Entered)

READ INSTRUCTIONS
V' REPORT NUMBER 2. POVY 7: 10 J 3 RECIPIENT'S CATALOG NUMBEN
War2[3
4. TITLE rand Sublitle) $. TYPE OF REPORT & PERIOD COVERED
STORAGE REQUIREMENTS FOR FAIR SCHEDULING Technical Report

6. PERFORMING ORG. REPORT NUMBER

AUTHOR(s) 6. CONTRACT OR GRANT NUMBER(y)

Michael J. Fischer and Michael S. Paterson ONR: NO0014-82-K-0154 and
NSF: MCS-8116678

PERFORMING ORGANIZATION NAME AND ADDRESS 10. ::22‘0‘:0“'«‘:5TTT’u.u.uoilztuc;' TASK
Department of Computer Science/Yale University

Dunham Lab./10 Hillhouse Avenue
New Haven, Connecticut 06520

" NR 049~-456/11~5-81 410

- CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

NSF, Washington, D.C. 20550/ Office of Naval October, 1982
Research, 800 N. Quincy, Arlington, VA 22217 13. NUMBER OF PAGES
7

MON:TORING AGENCY NAME & ADDRESS(/! ditferent tresn Centrolling Otfice) 18. SECURITY CLASS. (of this repent)
Office of Naval Research)

800 N. Quincy Unclassified
Arlington, VA 22217 [Tsa" © DECEAssITICATION "DOWNGRADING
ATTIN: Dr. R.B. Graftbon

. DISTRIBDUTION STATEMENT (of this Report)

Approved for public release; distributed unlimited.

17.

SISTRIBUTION STATEMENT (of the abatract entered in Block 20, I ditferent freen Repert)

18.

SUPPLEMENTARY NOTES

1.

KEY WORDS (Continue en reverse side i necessary and identity by block number)

Fair scheduling, analysis of algorithms, storage bounds, parallel computatiog

20

- A scheduler is strongly fair if each process which requests service

ABSTRACT (Continue en reverse side If necessan and identify by block mumber)

infinitely often is served infinitely often, and it is weakly fair if

each process which requests service all but finitely often is served
infinitely often. We show that any strongly fair scheduling algorithm

for n processes requires at least n! storage states (i.e. space proportional
to n log n). Similarly, any weakly fair scheduling algorithm requires

L

DD , 35", 1473 toiTiow oF 1 wov 68 18 OBsOLETE Y

at least n storage states. Both bounds are optimal.. |

v

$/N 0102-LF 014460

/ M
SECURITY CLASSIFICATION OF TWis PaOt mn#

Storage Requirements for Fair Scheduling*

Michael J. Fischer
Yale University
New Haven, Connecticut

and
Michael S. Paterson

University of Warwick
Coventry, England

Manuscript Date /
Augustp1982
Report Date

October 1982

Keyuvords: Fair scheduling, analysis of algorithms, storage bounds, parallel computation

*This work was supported in part by the Office of Naval Research under Contract N00O14-82-
K-0154, and by the National Science Foundation under Grant MCS-8116678.

Page 1

1. Introduction

In [3]. Park discusses notions of strong and weak fairpess in the execution of guarded
iterations. These concerns are also considered in (1] and [2]. We show that any “strongly fair”
scheduling algorithm for n processes requires at least n! storage states (i.e. space proportional to
n log n). Similarly, any “weakly fair” scheduling algorithm requires at least n storage states.

Both bounds are optimal.

For our present purposes we may define a acheduler as a transducer A with an input alphabet
of symbols corresponding to the non-empty subsets of {1, ..., n} and output alpbabet {1, n}.
It has the property that for each symbol input the generated output symbol is an element of the
corresponding subset. We may regard each input symbol as requests for service from some subset
of n processes and the output given by A as the scheduler's choice of which one of these to serve.

We consider infinite runs of such a scheduler.
A scheduler is

1. strongly fair if each process which requests service infinitely often is served
infinitely often, and _

2. weakly fair if each process which requests service all but finitely often is served
infinitely often.

Thus at any time in a strongly (weakly) fair schedule any process will eventually be served if
it requests service infinitely (continuously) from that time. Park's example of a strong scheduler
in [P] keeps the processes in a queue. At each step it serves that requesting process which is
earliest in the queue and then sends this process to the back of the queue. That this provides
strongly fair scheduling is easy to see since when apy process is unsuccessful in its request it
advances one position in the queue. Park expresses disquiet at the implementation overbeads for

such a scheduler.

By contrast, he shows a simple economical weakly fair scheduler. A counter with values in
{1, ..., n} is maintained. At each step the counter is incremented modulo b until it reaches the
pumber of a process requesting service. This process is then served.

We shall show that both of the schedulers given by Park are optimal in their use of storage

space.

LA e samae B Seses s 4 - e T ———— e T e sw =

Page 2

2. Main Results
Theorem 1. Any strongly fair scheduler for n processes has at least n! states.

Proof. For each i, let P, be the set of scheduler states with the property that the next time
process i requests service it will indeed be served.

Lemma 1. Fori # j, Pin l:’j = .

Proof. Ap immediate request for service by processes i and j would be an irreconcilable
conflict for any state in P, N Pj. (n}

Lemma 2. Foralli, P, # ¢.

Proof. Suppose P, == ¢. Since the initial state is ot in P;, there is some sequence w, of
inputs ending in a request from process i such that process i is not served during w,. Since the
resulting state is also not in P;, the same reasoning produces a continuation w, with the same
property. In this way we can show the existence of an infinite sequence of inputs W, %, Wy, iD
which i requests service infinitely often but is never served. This contradicts strong fairness. O

Lemma 3. The set of states P, is closed under the transitions effected by i-free inputs.
Proof. Immediate from the definition of P,. D

The proof of Theorem I now proceeds by induction on n. The result is trivial for n = 1. Let
us suppose the result holds for n-1 processes and consider the case of n processes.

Witk Lemma 2 in mind, consider any s, € P,. With s; as an initial state and allowing only
i-free inputs, we find that we have a strongly fair scheduler for {1, ..., n} ~ {i}. This follows
from the strong fairness of the original scheduler. By the inductive hypothesis this strongly fair
(n = 1)scheduler uses at least (n — 1)! states, and by Lemma 3 all these states are in P.. Hence
[P;| 2 (n ~ 1)!. Since this inequality holds for each i, we have, using Lemma 1, that the original
scheduler has at least n! states. O

Thus Park’s strongly fair scheduler is optimal in its storage requirement. Indeed the
naturalness of his queuing structure is supported by an analysis of the proof technique above. In
a patural way we can associate with every permutation of the processes a disjoint non-empty
subset of the scheduler states.

We close with a minor result, analogous to Theorem I.

Theorem II. Any weakly fair scheduler for n processes has at least n states.

——

e PR e - o n —— v —_— P———

Page 3

Proof. Conpsider the {constant) input sequence in which each process requests service at
every step. If the scheduler has fewer than n states, its resulting ultimately periodic behaviour
bas period less than n and so fails to serve some processor. O

Acknowledgement
We are grateful 1o David Park for introducing us to this problem.

References

(1] K. R. Apt and E.-R. Olderog. Proof rules dealing with fairness. Bericht Nr. 8104, Institut
fir Informatik u. Praktische Mathematik, Kiel University (1981).

[2] D. Lehmann, A. Ppueli, and J. Stavi. Impartiality, justice and fairpess: the ethics of
concurrent termination. In Automata, Languages and Programming, S. Even and
O. Kariv, eds., Lecture Notes in Computer Science Vol. 115, Springer-Verlag, 1981,
264-277.

[3] D.Park. A predicate transformer for weak fair iteration. Proc. Sizth IBM Symp. on
Mathematical Foundactions o f Computer Seienee, IBM Japan (1981), 257-275.

DISTRIBUTION LIST

Office of Naval Research Contract N0OOOl4-82-K-0154
Michael J. Fischer, Principal Investigator

Defense Technical Information Center
Building 5, Cameron Station
Alexandria, VA 22314

(12 copies)

Office of Naval Research
800 North Quincy Street
Arlington, VA 22217

Dr. R.B. Grafton, Scientific
Officer (1 copy)
Information Systems Program (437)

(2 copies)

‘Code 200 (1 copy)
Code 455 (1 copy)
Code 456 (1 copy)

Office of Naval KResearch
Branch Office, Passdena
1030 East Green Street
Pasadena, CA 51106

(1 copy)

Naval Research lLaboratory
Technical Information Division
Code 2627
Washington,
(6 copies)

D.C. 20375

Office of Naval Research
‘Resident Representative
715 Broadway, 5th floor
New York, N.Y. 10003

(1 copy)

Dr. A.L. Slafkosky
Scientific Advisor
Commandant of the Marine Corps
Code RD-1

Washington, D.C. 20380
(1 copy)

Naval Ocean Systems Center

Advanced Software Technology Division
Code 5200
San Diego,
(1 copy)

CA 92152

Mr, E.H. Gleissner

Naval Ship Research and Development Center
Computation and Mathemstics Department
Bethesda, MD 20084

(1 copy)

'Captaia Grace M. Bopper (008)

Naval Date Automation Command
Washington Navy Yard

Building 166

Washington, D.C. 20374

(1 copy)

Defense Advance Research Projects Agency
ATIN: Program Management/MIS

1400 Wilson Boulevard

Arlington, VA 22209

{3 copies)

Professor Michael S. Paterson
Department of Computer Science
University of Warwick

Coventry, Warwickshire CV4 7 AL
England

(1 copy)

